A SURVEY ON THE CONCEPTS
BEHIND LARGE LANGUAGE MODELS

Master Thesis

Daniel Kofler, BSc.
2310876002
June, 2025

MASTER OF SCIENCE
Performed at the

Fachhochschule Kérnten / Carinthia University of Applied Sciences

® © KARNTEN
000 University of
® @ Applied Sciences

Degree Program Applied Data Science

Supervised by
Dr. Peter Bachhiesl

Affidavit (Declaration of Originality)

I hereby declare that:

I have independently written the presented Master thesis by myself;

* | have prepared this Master thesis without outside help and without using any
sources or aids other than those cited by me; moreover, I have identified as such

any passages taken verbatim or in terms of content from the sources used;

* in addition, I have fully indicated the use of generative Al models (e.g. ChatGPT)

by specifying the product name and the reference source (e.g. URL);

* | have not used any other unauthorized aids and have consistently worked inde-
pendently and when using generative Al models, I realize that I am responsible

how the content will be used and to what extent

* I have not yet submitted this Master thesis in the same or similar form to any
(other) educational institution as an examination performance or (scientific) the-

Sis.

* | am aware that any violation ("use of unauthorized aids”) violates academic in-

tegrity and may result in (academic-related) legal consequences.

Gnesau, June 2, 2025 @WMQ[

Place and Date Student’s signature

il

Abstract

Following the success of ChatGPT and the exposure of artificial intelligence (Al) ca-

pabilities to the general public, this work intends to provide a formal description of
the concepts behind said applications. It presents a mathematical description of the
Transformer architecture introduced by Vaswani et al. and the training process of large
language models (LLMs). It furthermore elaborates on why it was successful in ad-
dressing the challenges of recurrent neural networks (RNNs). Throughout this work,
each component of a typical decoder-Transformer is detailed with mathematical for-
malisms, including gradient derivations. To support the theoretical framework, a library
was developed and validated against PyTorch. It provides a transparent and readable
implementation, while showing sufficient performance to train models with millions
of parameters. Using this library, an LLM was successfully pre-trained on the Tiny
Shakespeare dataset to demonstrate the learning capabilities of a Transformer model.
This work serves as an introductory guide for mathematicians and computer scientists.
All code is available on GitHub.

Keywords: Artificial Intelligence, Machine Learning, Natural Language Processing,
Transformer, Large Language Model

iii

Acknowledgements

I would like to express my gratitude to my project supervisor, Dr. Peter Bachhiesl. His
patience, support and advice played an important role and ultimately led to the success
of this work. Furthermore, I want to thank Andrej Karpathy for his influential work in
Al and deep learning. The educational resources he provides on his YouTube channel

were the initial inspiration for this project.

v

Contents

Affidavit

Abstract

Acknowledgements

List of Figures

List of Tables

Convention

1 Introduction

1.1
1.2
1.3

Why are Transformers successful?
Related Work L

Problem Statement

2 Tokenization

2.1
2.2

Obtaining a Token-Vocabulary
Text-Splitting Approaches
2.2.1 Character-level Tokenization
2.2.2 Word-level Tokenization
2.2.3 Sub-Word Tokenization

3 The Transformer

3.1

3.2
33
34

Embedding
3.1.1 Token Embedding
3.1.2 Position-Encoding oo
3.1.3 Embedding Addition oL
Normalization
Residual Connections
Masked Multi-Head Self-Attention (MHSA)
3.4.1 Using Multiple Attention Heads

ii

iii

iv

vii

ix

xi

3.4.2 Query, Key and Value Vectors
3.4.3 Scaled Dot-Product Attention
3.4.4 Concatenation and Output Projection.

3.5 Feed-Forward Network (FFN)

3.6 Classifier. e
4 Training of Transformer Models
4.1 TrainingData
42 LossTerm e
4.3 Updating Model Parameters
4.4 Backpropagationof Error L Lo
5 Generating Text
6 Implementation and Experiments
6.1 TheDatasetUsed
6.2 Library Implementation L oL
6.3 ExperimentSetup
6.3.1 Verification o
6.3.2 Pre-Training
7 Results
7.1 Verification
7.2 Pre-Training e
8 Discussion
8.1 Remarks on the Library Comparison
8.2 Remarks on Pre-Training
8.3 Outlook e
9 Conclusions
References

A Pre-Training Text Samples

vi

30
31
31
32
32

34

35
36
37
38
39
40

41
41
44

46
46
47
47

48

49

53

List of Figures

2.1
2.2

3.1
32

33

34

3.5

3.6

3.7

5.1

6.1

7.1
7.2

Typical tokenization process. oL 4
Example of how TikToken splits text into tokens. Top: shows how the
text is split into tokens by color-coding each token. Bottom: shows the

resultingtoken IDs. oo 7

The Transformer architecture proposed by Vaswanietal. [1]. 9
The decoder-Transformer architecture. As with the original architec-
ture, multiple Transformer blocks can be used sequentially. 10
According to Xiong et al. [2], Pre-Layer Normalization (left) outper-
forms Post-Layer Normalization (right) by accelerating Transformer
training through "well-behaved gradients”. 14
The residual learning block used in the work by He et al. [3]. Adding
the input of a weight layer stack to its output allows it to effectively
learn residual information. Lo 16
In Multi-Head Attention the normalized input is split into / equally
sized matrix chunks foreachhead. 19
In self-Attention, query, key, and value vectors are generated from the
same token embedding vector. L 19
The feed-forward network is applied to each token individually and in

parallel (represented by thedepth). 26
Autoregressive text generation. 34

Example of computation graph construction from expressions. Green

nodes indicate trainable parameters, while grey nodes represent opera-

The loss curves of PyTorch and the implementated library match perfectly. 42
The absolute deviation of loss values between PyTorch and the imple-
mentatation is insignificantly low but shows a positive trend. For the

smoothed line, the rolling mean over 50 steps was applied. 42

vii

7.3

7.4

7.5
7.6

The developed library shows an approximately 62% higher VRAM us-
age throughout the trainingrun. 43

PyTorch massively outperforms the implementated library. It shows up

to a 30-times higher number of tokens processed per second. 43
Training losscurve. L e 45
Validation losscurve. oL oL 45

viii

List of Tables

6.1
6.2
6.3
6.4
6.5
6.6

7.1

8.1

The first few lines of the Tiny Shakespeare dataset. 36
Hardware used for all training runs. 38
Software used in all trainingruns. 39
Other details relevant to training. 39
Hyperparameters used in the verification experiment. 39
Hyperparameters used for pre-training. 40
Summarized performance results. oL L. 41
Comparison to some published training configurations. 47

X

Convention

Scalars, Vectors, and Matrices

reR a real-valued scalar

xz cR™ a column-vector with m real-valued components

x' € R™ a row-vector with m real-valued components

1 a column vector of ones with m components

X e R™ a matrix with m rows and n columns containing real-valued
elements

X" e Rm the transposed matrix X

1 a matrix of ones with m rows and n columns

Indexing
I
. T2
T; the 7-th component of a vector x =
Lm
Xl,:
. . X2,:
X, the i-th row of a matrix X =
Xm,:
X.; the j-th column of amatrix X = | X.; X., ... X.,
X the element in the ¢-th row and j-th column of a matrix X
X1 X2 .. X,
X — X.2,1 X.2,2 . X'Q,n
Xml Xm,2 s an

)

Sets

A a set

R the set of real numbers

{1,2,...,n} the set of all integers between and including 1 and n
0,1] the real interval including 0 and 1

Information and Probability Theory

X a random variable
E(X) the expectation value of a random variable X
Var (X) the variance of a random variable X
Functions
exp () the exponential function evaluated at z € R
erf (x) the gaussian error function evaluated at x € R
log (z) the natural logarithmn of x € R
Calculus
% the partial derivative of y with respect to =
1 ifi=j
dij = the Kronecker delta

0 otherwise

Xi

CHAPTER 1. INTRODUCTION 1

Chapter 1
Introduction

Since ChatGPT took the world by storm in late November 2022 it has transformed
the public view of artificial intelligence. For the first time, Al was made available
and usable for day-to-day tasks, leading to an increase in hype around the field and its
applications. At the heart of large language models, such as GPT-40 by OpenAll, lies
the Transformer neural network architecture developed by Vaswani et al. and described

in their paper ”Attention is all you need” [1].

In their work the authors elaborate on how their newly proposed Scaled Dot-Product
Attention mechanism can solve problems that limited recurrent neural networks, such
as Long Short-Term Memory (LSTM) [4] models. So far, the Transformer architecture
has stood the test of time and has yet to be dethroned.

1.1 Why are Transformers successful?

Many components of the model architecture are not new. Rather, it combines recent
developments, such as Attention [5], Normalization [6,7] and Residual Connections [3]
with concepts that have existed for decades, such as the Perceptron [8]. Furthermore, the
parallelizable architecture of a Transformer leverages the computational power avail-

able today, forming a system that is capable of solving a wide range of problems.

Traditionally, when working on data with temporal dependence such as text, RNNs
were the model of choice. Such a network processes sequence elements one at a time,
passing information learned from previous elements to the next. This implies an inher-

ent restriction of recurrent neural networks, as elements must be processed one after

"https://openai.com/

CHAPTER 1. INTRODUCTION 2

the other, and computations cannot be performed in parallel. Furthermore, because of
this step-by-step processing, relevant information must be passed over long temporal
distances and is therefore at risk of being lost. This effect increases with the input
sequence length. Transformers mitigate these challenges as all input elements are pro-
cessed simultaneously and in parallel by computing pairwise similarity scores between
all elements. The risk of information loss due to long sequences is thereby removed,
which allows one to scale such models to billions of parameters. As all operations are

differentiable, the well-established backpropagation algorithm is used for training.

Additionally, as will be shown in this work, the matrix multiplication is the dominant
operation in Transformer models. Optimizing hard- and software in this regard has thus
been a priority of manufacturers. The sharp increase in computational capabilities of
graphical processing units (GPUs) has allowed companies and research labs to train

these models on a large scale [9].

1.2 Related Work

The number of works describing Transformer models grows by the day. While some
books, such as [10, 11], offer a good overview of the architecture and also provide
code examples, the mathematical details are often omitted, and existing programming
libraries are relied upon to do gradient computation automatically. Papers, such as
[12], focus on the description of algorithms, but again disregard mathematical details.
Furthermore, there are countless blog posts, YouTube videos and GitHub repositories
that aim to provide an intuitive explanation of Transformer models that again do not
focus on details. It seems that current descriptions are mainly targeted at engineers and

applications, rather than academia.

1.3 Problem Statement

As highlighted, despite the growing volume of material on Transformers and large lan-
guage models, explanations are often vague or incomplete. Rarely are concepts de-
scribed on a fundamental level and derivatives essential for training are usually omit-
ted. This work aims to offer a complete formal introduction, supported by a Python
reference implementation, to lower the entry barrier for both mathematicians and com-
puter scientists. The focus is on the decoder-Transformer, the most relevant variant for
modern LLMs.

CHAPTER 2. TOKENIZATION 3

Chapter 2
Tokenization

To make use of textual information for machine learning, it is necessary to encode it
into a numerical representation. Text does not only include letters of the alphabet, but
also numbers, punctuation and other characters. This encoding step forms the basis for
extracting features from text, which is useful for natural language processing (NLP)
tasks in general (not only large language models). Tokenization describes the idea of
dividing text into units of information, called tokens, and subsequently replacing them
with their unique token ID (an integer number). For this, a set of possible tokens (and
token IDs), called vocabulary V, must be defined first. Once outlined, it can be used to
encode arbitrary text.

2.1 Obtaining a Token-Vocabulary

A token-vocabulary V is based on a given input text s; € S, where S represents the
set of all texts. To obtain tokens from the text, it is first split using a splitting function
fspiit 1 S — V into a vector of tokens ¢ shown in Eq. (2.1). The set of unique tokens in

t then represents the vocabulary V = {vy, v, ..., v,} with vocabulary size n.

t

ts N
fou(si) =t=| | €V 2.1

tm

CHAPTER 2. TOKENIZATION 4

The token ID can be obtained from a token via an index function [: V — N shown in
Eq. (2.2).
I (vj) =7 2.2)

To summarize, Fig. 2.1 shows the process of obtaining a vocabulary from a text.

Vocabulary
‘Lorem': 1
"ipsum'’: 2
‘dolor': 3

"sit': 4
"amet’: 5
196
27
‘3.8
: 9

Text Tokens
Lorem ipsum dolor ————split——— [Lorem] [ipsum] [dolor]
sit amet 123. [sit] [amet] [1]1[2][3][.]

assign id—»

Figure 2.1: Typical tokenization process.

Once the vocabulary is obtained, it can be used to produce a vector of token IDs from
any arbitrary text s; via a tokenization function fioken : S — N. This is done by first
splitting a text into a vector of tokens using Eq. (2.1) and subsequently replacing each

token by its corresponding token ID using Eq. (2.2).

I
T2
T = foken (57) = 1 (foprie (57)) = (2.3)

L

zeN" s, €8

CHAPTER 2. TOKENIZATION 5
2.2 Text-Splitting Approaches

Different tokenization approaches vary in their strategy on how they split text into to-
kens. Subsequent machine learning models use the resulting token ID vectors as input.
Transformer models scale quadratically with the number of tokens in this input vector
(as they compute pairwise token similarities). It is therefore favorable to keep the num-
ber of tokens as low as possible and as high as necessary, depending on the application.
Assuming that the maximum number of input tokens is given by the model, the splitting

strategy of tokens represents an inherent trade-off:

* Choosing fewer characters to represent a token means each token carries less
information, which leads to lower input complexity for the model. This reduces
the vocabulary size and speeds up processing. However, with this approach, more

tokens are required to represent the same text.

* In contrast, using multiple characters per token increases the information content
of each token, allowing the model to process more meaning per step. However,
this also expands the vocabulary, as it now contains combinations of characters.
This may introduce challenges in handling unseen words if a particular combina-

tion of characters is not present in the vocabulary.

The trade-off impacts model efficiency, context understanding, and generalization. In

the following sections, some of the most common approaches are described.

2.2.1 Character-level Tokenization

With a character-level tokenizer, single characters are considered tokens. This allows
for the use of a predefined character set such as ASCII! to obtain the vocabulary V =
{’Ui ‘ Vi € ASCII}

Thttps://www.ascii-code.com/

CHAPTER 2. TOKENIZATION 6

2.2.2 Word-level Tokenization

Using entire words as tokens has the benefit of exposing the subsequent model to more
information. This, however, implies a large vocabulary as words represent combinations
of characters. Taking the Oxford English Dictionary?, which contains 600,000 words, as
an example, this means the vocabulary contains 600,000 unique tokens. Consequently,
a machine learning model would have to compute probabilities for each token to predict
the next one in a sequence. An alternative approach would be to use the n most frequent
words in the English language and handle unknown words with a special token — often
called the out-of-vocabulary (OOV) token. This strategy would then cover the English
language, but most state-of-the-art models can handle multiple languages.

2.2.3 Sub-Word Tokenization

This approach represents a balance between token information content and vocabu-
lary size. Common algorithms to achieve this include WordPiece [13] and Byte-Pair-
Encoding (BPE) [14] (which is commonly used today). The core idea of BPE is to iter-
atively fuse the most frequently occurring character pairs (or byte pairs) in textual data
to create new tokens. Using this approach, the resulting vocabulary contains character-
based tokens, as well as tokens representing combinations of characters, depending on
their occurrence in the text. A popular implementation using BPE is TikToken?, which
is used with OpenAT’s large language models. It also comes with a visualization tool*

to help understand the tokenization process, as shown in Figure 2.2.

Zhttps://languages.oup.com/dictionaries/
3https://github.com/openai/tiktoken
“https://platform.openai.com/tokenizer

CHAPTER 2. TOKENIZATION 7

GPT-40 & GPT-4omini GPT-35&GPT-4 GPT-3 (Legacy)

A Survey on the Concepts behind Large-Language-Models

Clear Show example
Tokens Characters
11 53

A Survey on the Concepts behind Large-Language-Models

Text Token IDs

GPT-40 & GPT-40 mini GPT-3.5&GPT-4 GPT-3 (Legacy)

A Survey on the Concepts behind Large-Language-Models

Clear Show example
Tokens Characters
1 53

[32, 38758, 402, 290, 123988, 7807, 27976, 9665, 4088, 12, 15999]

Text Token IDs

Figure 2.2: Example of how TikToken splits text into tokens. Top: shows how the text
is split into tokens by color-coding each token. Bottom: shows the resulting token IDs.

CHAPTER 3. THE TRANSFORMER 8

Chapter 3
The Transformer

Vaswani et al. introduced the Transformer in their groundbreaking paper ”Attention is
All You Need” [1]. This model architecture was originally invented for machine trans-
lation. The authors aimed for a model, which solely relied on the Attention mechanism
and did not incorporate recurrent neurons or convolutions. They achieved this by intro-
ducing a new variant of the Attention mechanism and combining it with (at the time)
novel ideas such as Layer Normalization [7] and Residual Connections [3]. Together
with a layer of densely connected neurons this forms a Transformer block. Multiple
such blocks are used in sequence, originally proposed as an encoder-decoder model de-
picted in Fig. 3.1. Furthermore, Dropout [15] may be applied throughout the model to

improve generalization.

Since its introduction, different variants of the Transformer architecture have been de-

veloped for specific applications:

* Encoder-Decoder-Transformers: Following the original architecture, this Trans-
former variant combines an encoder block, which extracts features from the input,
with a decoder block that uses these features for next-token prediction. This ar-
chitecture has shown promising results in machine translation [1], summarization

and speech recognition [16].

* Encoder-Transformers: This variant is used to extract features from a token
sequence, which are then used for classification and other tasks. The most promi-

nent implementation of an encoder-Transformer is BERT [17].

* Decoder-Transformers: The decoder variant is primarily used for generative
purposes, such as large language models, and is the main focus of this work.

Decoder-Transformers use causal masking to prevent tokens from accessing fu-

CHAPTER 3. THE TRANSFORMER

: 4
®

Feed Forward
Network

Encoder
Transformer :
Block
l..n k *

®

: 4

] [Multi-]
Head Attention
t A ,

Position
?F
Token
Embedding

f

Input Token IDs

Next Token
Probabilities

Feed Forward
Network

Normalization

—»@—»U >

Decoder
Multi- . Transformer
Head Attention ?lOCk
..n

|
9
1

Masked Multi-
| Head Attention
t A ’

@ Posmfnn
f Encoding
Token
Embedding

f

Output Token IDs
(shifted right)

Figure 3.1: The Transformer architecture proposed by Vaswani et al. [1].

ture tokens, making them suitable for next-token prediction tasks, such as text
generation. A well-known implementation is the GPT series by OpenAl [18-20].

This general architecture is shown in Fig. 3.2.

The following chapters detail the components of the decoder-Transformer shown in
Fig. 3.2. Each section explains how data is transformed through the architecture and
presents the corresponding operation derivatives, which are essential for training mod-
els, as later discussed in Ch. 4.

CHAPTER 3. THE TRANSFORMER 10

Next Token
Probabilities

*

[Classifier

*

[Normalization J

—

(Feed Forward

: Feed : Network]
. Forward: 0
Block : f :

[Normalization)

Transformer . '

Block ° He—

1..n *
: ;‘ Masked Multi- |
Head Attention

Attentlon
5 Block 3

Normalization

@

Token Position
Embedding Embeddlng

Token IDs

Figure 3.2: The decoder-Transformer architecture. As with the original architecture,
multiple Transformer blocks can be used sequentially.

CHAPTER 3. THE TRANSFORMER 1
3.1 Embedding

The embedding components of Transformer models handle token embedding, as well as
the addition of positional information to each token. Both are described in the following

sections.

3.1.1 Token Embedding

Word embeddings have been used in NLP for decades. However, in 2013 they gained
significant attention with the introduction of Word2Vec [21], which used an artificial
neural network to learn numerical word representations. In essence, token embeddings
are numerical vectors whose relative similarities (e.g. their Euclidean distance or cosine

similarity) correlate with semantic similarity of the underlying tokens.

The process of word embedding can be understood as a lookup of embedding vectors
from a matrix W'F ¢ R™*4mel (called embedding table) using token IDs as indices.
This matrix contains n unique embedding vectors (one for each token in the vocabulary
V). Each of the vectors has dimensionality dy,q (referred to as model dimension),
which represents a model hyperparameter. Furthermore, the components of the em-
bedding table are trainable model parameters, which are initialized randomly (usually

drawing from a standard normal distribution).

For an input vector & € N™ containing m token IDs, the token embedding for token ID

x; corresponds to the embedding vector WE as shown in Eq. (3.1).

WTE

T,
TE ' We,.
X * = TokenEmbedding (z) = o
: G.1)

WTE

Tm,:

XTE c Rdemodc] WTE c Rndeodcl
)

Because this implies that X lﬂj = WTE the corresponding derivatives are

wi’j’

TE
8X7m7
TE
ow .

= 5mi}>5j

fori,p=1,...,mand j,qg=1,..., dnodel-

CHAPTER 3. THE TRANSFORMER 12

3.1.2 Position-Encoding

By only relying on the Attention mechanism and avoiding recurrence and convolution
in the Transformer architecture, the ordering of tokens is not present for the model
to process. Vaswani et al. [1] therefore added a fixed positional encoding” to token
embeddings in their original proposal, while referring to the work of Gehring et al. [22].
However, more modern LLMs, such as the GPT series [18—20], make use of a learned

positional embedding.

In contrast to word embedding, where embedding vectors are selected using the token
ID, in learned positional embedding, the first m rows of a matrix WPE ¢ ReXdmosel gre
used. The matrix contains c unique positional embedding vectors, where c represents
a hyperparameter and corresponds to the maximum number of tokens the Transformer
can process (referred to as maximum context size). For positional embeddings, the
same number of embedding dimensions dpqe 1S used, such that word- and positional
embedding vectors can be summed. The components of W again represent learnable

model parameters, which are initialized randomly.

For an input vector x € N containing m token IDs with m < ¢, the positional embed-

ding for the ¢-th token corresponds to the embedding vector Wff, as shown in Eq. (3.2).

Wit
o . . W
X" = PositionEmbedding () = 7
: (3.2)
Wi
XPE c IRW”Ldeode]7 WPE c RCdeodel

L PE _ yx/PE
Again, since Xi’]- = WZ-J,

the corresponding derivatives are
PE

0X; 7

PE

ow .

= 6,0,

J

fori,p=1,...,mand j,qg =1,..., dnodel-

CHAPTER 3. THE TRANSFORMER 13

3.1.3 Embedding Addition

Once both embeddings are computed, their matrices are added as described in Eq. (3.3),

resulting in the final token embeddings X*.

X" =X" 4 X" X g R o (3.3)

Since embeddings are simply added, the derivatives are

E
aaXXTE — 1 m X dmodel
E
aX — 1 M X dmodel

aXPE

CHAPTER 3. THE TRANSFORMER 14
3.2 Normalization

Normalization layers occur multiple times throughout the Transformer and play a vital
role in the training of these models. They allow one to train deep neural networks by
avoiding the problem of vanishing and exploding gradients [23]. There exist several
approaches for implementing normalization in neural networks, such as Batch Normal-
ization [6] and Layer Normalization [7]. The GPT series and the original Transformer
architecture use the latter to scale embedding vectors and will therefore be covered in

this section.

Vaswani et al. applied Layer Normalization after each Attention- and feed-forward
block. This approach is referred to as Post-Layer Normalization. Later, it has become
more common to use a normalization layer before applying the Attention mechanism
and the feed-forward block as depicted in Fig. 3.3. This so-called Pre-Layer Normal-

ization was shown to benefit the training process by Xiong et al. [2].

b Normalization

Network

. Feed Forward
Normalization .]
1 | Network

- (oo)

Masked Multi- : :
Head Attention :] @

E : d Multi-
. H ttention
Normalization : .

Maske:
ead A
1 i Q A }

Feed Forward é
*

iy

Figure 3.3: According to Xiong et al. [2], Pre-Layer Normalization (left) outperforms
Post-Layer Normalization (right) by accelerating Transformer training through “well-
behaved gradients” .

In Transformer models, each token embedding vector X; . of a matrix X € R™* model jg
normalized independently using Eq. (3.4). Two learnable parameter vectors -y (initial-
ized as 1) and 3 (initialized as 0) are introduced. These are shared between tokens and

allow the model to learn a scaling and shifting of the output distribution.

CHAPTER 3. THE TRANSFORMER 15

Xij— 1
Xi“jN = Layernorm (X; ;) =, ——

+B;
o (3.4)

77 /6 c Rdmodd’ XLN c Rdemndel

The statistics for the i-th token embedding vector are computed as

1 dmodel 1 dmodel
2
i = > X, o =7 (X —)
model — model 1
J J
The corresponding derivatives are
LN
(9Xi,j 6@'&
8Xp,q g;
LN
0X ;3 iy Yi
ip
aIJ’p g;
LN
0X7; _ 5 'Xi,j_lii
do, w7 o?
LN
X3 X~y
v, .
LN
8Xi7j = djp
98,
and using § = < ldl Zjﬁ“{‘e‘ (X,,; — m;)°, the statistics derivatives are
o, o (5ip
a)(pg dmodel
0X,, 7 0S 0X,,

1 1 dmode] al,l,
=0 —— - 2(X, —) | 050 — i
P 2\/§ dmodel ; (X H) (! aXPvQ>

dmodel
dip

ou,;
= X, —u) (6., ——2Hi
i o X) (50)

=1

fori,p=1,...,mand j,qg=1,..., dnodel-

CHAPTER 3. THE TRANSFORMER 16

3.3 Residual Connections

Besides Layer Normalization, another measure to improve the learning procedure in
Transformers is the use of residual connections (also called skip connections). The
idea behind these was introduced by He et al. [3]. The authors showed, how the use
of skip connections can improve the training time and performance of deep neural net-

works.

This is achieved by adding the input to a block of layers to its output, as illustrated in
Fig. 3.4. In Transformers, this block of layers corresponds to the Mulit-Head Attention
block and the feed-forward block, as depicted earlier in Fig. 3.2. By using residual
connections, layers do not need to preserve useful information from their input and can
therefore emphasize on learning new, residual information (He et al. call this “residual
learning”). Furthermore, if a layer turns out to be redundant during optimization, it can

be eliminated by shrinking its weights towards zero.

--------- T

[Weight Layer J

f

f(x) (Activation Function]

f

(Weight Layer J

Figure 3.4: The residual learning block used in the work by He et al. [3]. Adding
the input of a weight layer stack to its output allows it to effectively learn residual
information.

Because Transformers process token embeddings, by adding the input to a layer back
to its output, the semantic meaning of a token embedding is updated depending on the
context of other tokens. This can be thought of as tokens following a path in R%ml ag

they are processed in each layer.

In Transformers, the input X € R™>dmotel 1o the Attention block and feed-forward block
(as denoted in Fig. 3.2) is added back to their output. This idea is described in Eq. (3.5)

where blocks are represented by a function fgoe : R dmodel —s R X dmodel

CHAPTER 3. THE TRANSFORMER

XRC = fBlOCk (X) _'_ X XRC -~ Rdemodel

The corresponding derivatives are

OXRC 9,

- X ldemodcl
aX (9X fBlock () +

17

(3.5)

CHAPTER 3. THE TRANSFORMER 18

3.4 Masked Multi-Head Self-Attention (MHSA)

The idea of the Attention mechanism, as introduced by Bahdanau et al. [5] in 2014,
lies in allowing input elements to interact and learn which other elements are relevant
in a given context. The authors suspected that “the use of a fixed-length vector is a
bottleneck in improving the performance of a basic encoder—decoder architecture” and
therefore proposed to “allow a model to automatically (soft-)search for parts of a source

sentence that are relevant to predicting a target word”.

For Transformer models, Vaswani et al. proposed an Attention variant, which they
called Masked Multi-Head Self-Attention. It enables a Transformer to learn, which
inputs are relevant to make predictions for the next token. By computing pairwise
similarities between all input tokens, the model simultaneously generates predictions

for all m tokens in the input. This mechanism is explained in the following sections.

3.4.1 Using Multiple Attention Heads

In Multi-Head Attention, the computations happen in multiple independent Attention
heads in parallel. Vaswani et al. [1] "found it to be beneficial” and claim that ”Multi-
Head Attention allows the model to jointly attend to information from different repre-

sentation subspaces at different positions”.

The normalized input XN € R"*dmu is split into i smaller, equally sized matrices,
where h represents the number of Attention heads (a hyperparameter). This partitioning
is done along the dpoqe-dimension, splitting the m X dp04e1 input matrix into multiple
m X % chunks, as shown in Eq. (3.6) and Fig. 3.5. This new, smaller dimension
is often called head dimension dj.,q = %. This also implies that dj;,qe must be
divisible by h.

H, __ LN LN LN
X - Xza(i_l)'dhead‘i‘l sz(i_l)'dhead‘i‘Q e X57i'dhead]

, (3.6)
Xt g R j =1 ... h

When training the Transformer model, the matrices containing the derivatives for each

head are concatenated, which is structurally analogous to Eq. (3.14).

CHAPTER 3. THE TRANSFORMER 19

Rdemodel
Head 1 Head 1 Head h

e Rdehead }(H’2 = Rdehead ‘ L XHJ’ = Rdehead

Figure 3.5: In Multi-Head Attention the normalized input is split into & equally sized
matrix chunks for each head.

3.4.2 Query, Key and Value Vectors

For the Attention mechanism, the computation of pairwise similarities requires query,
key and value vectors for each token. In this context, self-Attention means, all three
of these vectors are created from the same input token embedding vector, as depicted
in Fig. 3.6. This is not the case in encoder-decoder-Transformers. These vectors are
obtained through linear transformations of token embeddings using the weight matrices
W Wi and WY (for the i-th Attention head). The elements of these matrices

represent learnable parameters which are initialized randomly.

XH,i

W,i

, .1
2 =
Figure 3.6: In self-Attention, query, key, and value vectors are generated from the same
token embedding vector.

CHAPTER 3. THE TRANSFORMER 20

Egs. (3.7) to (3.9) describe the linear transformations of a head input matrix X Hi ¢

R™*deat to query, key and value matrices for the i-th Attention head.

Qi — XH7iWQ7i Q'L c Rdehead’ WQJ c Rdheadthead (3'7)
Ki _ XH,in,i K’L c Rmxdhead’ WK,i c Rdheadthead (38)
Vi — XH,in,i VZ c Rmxdhead’ WV,i c Rdhead X dhead (39)

The corresponding derivatives are

3Q;,k' _ 5w

ale;{Z Jp q,k

0K’ .

gk K,i

5)(% - 5JPWq,k

oV .

gk V,i

5X§J§ - 6jPWq,k:
Q" OK" oV .
Qj,k Jik Bk 5qu%

Qi Ki Vi
OWM aqu 8Wp7q

forj,p=1,....mand k,q=1,..., dpeaa-

3.4.3 Scaled Dot-Product Attention

To actually compute similarities, Vaswani et al. proposed Scaled Dot-Product Atten-
tion (with optional masking for decoder-Transformers) to compute Attention scores.

In the following section, the ideas behind the proposed mechanism are described.

CHAPTER 3. THE TRANSFORMER 21

3.4.3.1 Token-Similarities

First, token similarities are computed via a dot product between every token’s query

and key vectors.

Qi
Q;.

v - . e
QK = KT OKY K QKT e R™™

Q!
m,:

The derivatives computed as

a[QiKi,T}j,k B 6 KZ

T ot YirTrEg
8vaq

a[QZK%TL’,k — 5. Ql
0K, e

forj,k,p=1,...,mandqg=1,..., dpea-

3.4.3.2 Scaling

Next, each component of the token-similarity matrix QK" " is scaled by \/dlhid This is
done, because large absolute values can cause problems with vanishing and exploding
gradients [23]. Vaswani et al. [1] argue their choice for the scaling factor by first assum-
ing that for a query vector g and key vector k, their components gq,, k; are realizations
of random variables

QK= N(0,1).

Then the expectation of the dot product remains

E(q k) :E<iqi'ki> :iE(qi>'E<ki) =0

but the variance grows to

dhead dhead
Var (q - k) = Var (Z q; -ki) = Z\/ar (q; - ki) = dhead
i=1

CHAPTER 3. THE TRANSFORMER 22

with the variance of the products described by Goodman [24] as

Var (¢; - k;) = [E(q;)]” Var (k;) + [E (k;)]* Var (g;) + Var (¢;) Var (k;) = 1

0 1

The scaling can therefore be interpreted as a normalization by subtracting the mean 0
and dividing by the standard deviation \/dje,q. The corresponding derivatives of the

scaling operation are

S,i
OXk 1 jwm
0 [QZKZ’T]IM] V head

for j,k,p,q=1,...,m.

3.4.3.3 Mask

As mentioned, decoder-Transformers produce predictions for all m tokens of the input.
Therefore, it is necessary to apply a causal mask to the scaled token-similarity matrix,
which prevents tokens from aggregating information from other tokens that occur later
in the input (future tokens). This can be achieved by first setting the corresponding

scaled token-similarity to —oo according to Eq. (3.10).

—o0 if1 <y o
Mask (X, ;) = i,j=1,....,m (3.10)
X;; otherwise

By applying the mask, only scaled token-similarities in the lower triangular half of the

matrix remain.

X = Mask (X51)

S
X7l -0 —00 ... —©
S,i Si
X5 X5, —o0o ... —© o
- . , QlKl’T
- S S S j
XMi— | X3 X35 X35 ... —oo | e R XS =
. . . V dhead
S;i S,i S,i S,i
Xm71 Xoma Xos oo vam

Because the masking is equivalent to adding —oo to matrix elements, the derivatives

become

9 i
m Mask <X§,’k‘) = 5jp5kq

p.q

for j,k,p,q=1,...,m.

CHAPTER 3. THE TRANSFORMER 23

3.4.3.4 Softmax

Subsequently applying the Softmax function described in Eq. (3.11) to each row of the
scaled token-similarities yields a right stochastic matrix.

exp (x;)

Softmax (x;) = ¢ (x;) = ——————
() =€ 0) = ST exp ()

3.11)

For the Softmax function in general, derivatives are computed using s = Z‘,:il exp (xy)
for two distinct cases.

e fori=j
2 () = 2 (i) - 5 — exp (@;) - exp (x;)
ox; ! &2
_exp (z;) exp(xi) exp(x;)
=¢(x;) — s (x5) < ()
= (z;) - [1 — < (z;)]
 fori #j
aiwjg (z:) = _eXpSgwi) -exp (x;)

exp(@) exp(a;)
S S

= —¢ (i) s (x))
= (xi) - [0 —c(z;)]

Both cases can be combined using the Kronecker delta.

a%< () = < (@) - (6 — < ()

In the Transformer context, this means

SM, i
Xy
0X5?

p.q

o SM,i SM,i
- 6ijj,k (5kq - Xp,q)

for j,k,p,q=1,...,m.

CHAPTER 3. THE TRANSFORMER 24

Elements of the resulting matrix are non-negative real numbers in the range [0, 1] with
matrix rows summing to 1. Furthermore, similarity scores previously set to —oo vanish
as e~ = 0, resulting in a lower triangular matrix. The elements of this matrix are
termed Attention weights, and represent the contextual relevance between tokens -

specifically, X ?1\,:“ measures how relevant the k-th token is to the j-th token.

SMi M,i
Xk =¢ (Xj,k>

1 0 0 o 0
SMyi 5SM,i

XM xS g -

SMii _ | wSMid ¢ SMii 3 SMii mxm SMi _
XM= | X5 Xy Xyt oo 0 € [0,1] ; E Xk =1

. k=1
SMyi 5 SM,i ySMi SMi

Xm71 Xoms Xoi - Xmm

3.4.3.5 Attention Scores

To obtain the final Attention scores for the ¢-th head, the weights are multiplied by the
value vectors following Eq. (3.9). This can be interpreted as the weighted aggregation
of information from previous tokens in the input. No information from succeeding

tokens is aggregated, since their Attention weights are 0.

XA,i _ XSM,iv'i X'A,i c Rdehead (312)

The corresponding derivatives are

A

an,k: _ 5 Vz

aXSM,i —Yip¥ qk
Pyq

for j,p,q=1,...,mand k =1,..., dpeaq and

A
an,k -5 XSM,i
T IPt T gp

ov,.,
forj,p=1,...,mand k,q=1,..., dpeaq-

Putting all parts together, Scaled Dot-Product Attention is described by Eq. (3.13) for
the i-th Attention head.

Attention (Qi K Vi) =g (Mask (QZKZT)> \%& (3.13)
’ ’ V dhead

CHAPTER 3. THE TRANSFORMER 25

3.4.4 Concatenation and Output Projection

As shown in Eq. (3.14), the results computed independently in each Attention head are
concatenated along their head dimension, yielding /- dpeag = diodel-dimensional vectors.
The final step of Masked Multi-Head Self-Attention involves a linear transformation of
these vectors using a weight matrix W (containing randomly initialized, learnable

parameters).

XMHA = Concat (XM, XM, X4 WO

(3.14)
XMHA 6 RdemOdel, WO e Rdmode]deodel

The derivatives, using X “"* = Concat (XA’I, XM XA’h), are

MHA
& — 5. WPO.
aXCOncat w a,]
Pa
fori,p=1,...,mand j,qg=1,..., dnode and
MHA
8Xm
0
8Wp’q

_ £ Concat
= 0jq X ip

fore=1,...,mand j,p,qg =1, ..., dnodel-

To obtain the concatenation derivatives, the matrix is split into equally sized chunks

analogous to Eq. (3.6).

CHAPTER 3. THE TRANSFORMER 26

3.5 Feed-Forward Network (FFN)

Tokens have so far aggregated contextual information from other tokens. In the feed-
forward network, this accumulated information is processed. This block handles to-
kens individually and in parallel using linear transformations and activation functions.
Tokens do not interact as they do in the Attention block, and for each token, weight
matrices and bias vectors are shared. These weights can be interpreted as the model’s

information memory.

The original feed-forward network proposed by Vaswani et al. [1] uses three layers: an
input layer and two hidden layers with trainable parameters, as depicted in Fig. 3.7.
The first hidden layer (abbreviated as L) contains 4 - dp,qe neurons and the second
hidden layer (abbreviated as L) has d;,04e Neurons (4 can be seen as a hyperparameter,
although Transformer variants usually adopt this value). Besides the weight matrices
W W2, the network also uses the bias vectors ™', ™2 for each hidden layer, with
all parameters initialized randomly. These hidden layers in the feed-forward network

turn out to contain most of a Transformer’s parameters.

T 000
(e) A

{17

[Activation Function] | vel] oh
£ L)

oot) N\
? 000

Figure 3.7: The feed-forward network is applied to each token individually and in par-
allel (represented by the depth).

In between the hidden layers, an activation function is applied to each neuron. While
Vaswani et al. [1] used the ReLLU activation function described in Eq. (3.15), later mod-
els, such as the GPT series, used GELU [25] (Eq. (3.16)) for improved performance.

CHAPTER 3. THE TRANSFORMER 27

0 ifx<O
ReLU (z) = (3.15)

x otherwise

GELU (2) = z - @ (z) :x-% [1+erf (%)} (3.16)

For all m normalized embedding vectors within the matrix X~ € R™*%mwe | the output
of the feed-forward network is computed as described in Eq. (3.17), using an activation

function f,, applied element-wise.

XL1 _ XLNWL1 + 1mbL1,T
X = fact (XLI)
XFFN — XaCtWL2 + 1mbL2,T
XFFN e Rdemodel
‘/‘/L1 € RdmodelX4'd1nodel bL1 c R4'dmodel
9

WL2 € R4'dm0del><dmodel’bL2 e Rdmodel

(3.17)

The corresponding derivatives for L? are

FFN
OXT o
aXact - Yip q,J
p,q

fori,p=1,....mandj=1,...,dngeand g =1,...,4 - dyodel,

FFN
0X;;
L2

ow,,

_ 5 act
= 5]qu’p

fori = 17"'7mandj>q = 1a---7dm0del andp: 1a--'74'dmodela and
FFN
X
L2
ob.

fore=1,...,mand 5,p=1,..., dmnodel-

The activation function derivatives are

ox 0 .
=5 8 — (X.L,>

Ll 1pYiq Ll act 1,5
0X,, 0X,,

fori,p=1,...,mand j,qg=1,...,4 dyodel-

CHAPTER 3. THE TRANSFORMER

Lastly, the corresponding derivatives for L' are

Ll
W,
8Xp » q,J

fori,p=1,...,mandj=1,...,4 dpoger and ¢ = 1, ..., dmodel,

X%
@WLJI = 5qu1£1;

p.q

fore=1,...,mand j,q=1,...,4 " dnoges and p = 1, ... diodel, and

X"
Ll
8bp

— Yip

foreo=1,...,mand j,p=1,...,4 - dnodel-

28

CHAPTER 3. THE TRANSFORMER 29

3.6 Classifier

After tokens have aggregated contextual information in Attention blocks and were sub-
sequently processed in feed-forward blocks, the probabilities for the next-token predic-
tion can be computed. As described in Eq. (3.18), a final Layer Normalization is per-
formed, followed by a linear transformation to obtain the so-called model logits X L
Applying the Softmax function yields probabilities Yi, ; which represent the probability
of the j-th token of the vocabulary V following the i-th input token .

For the linear transformation, the embedding table WTE is re-used, as Press et al. [26]
showed that this "weight tying” reduces the model size without harming its perfor-

mance.

X" = Layernorm (X FFN) WTET

Y = Softmax (XL) (3.18)

Y e [0’ 1]m><n 7 WTE c Rnxdmudel’ Z ?’L,] =1
j=1

Computing the Layernorm and Softmax derivatives is analogous to Secs. 3.2 and 3.4,

respectively. Using X = Layernorm (X"™), the remaining derivatives are

oxt,
AN = oW g

LN
X,
fori,p=1,...,mandj=1,...,nandg=1,..., dnogel, and

0Xr.
£ = 5J‘sz‘L,§

TE
ow .
fori=1,...,mand j,p=1,...,nand ¢ =1, ..., dnodel-

This concludes the components of a decoder-Transformer model.

CHAPTER 4. TRAINING OF TRANSFORMER MODELS 30

Chapter 4
Training of Transformer Models

The training of LLMs typically consists of two or three phases:

* Pre-training: In this first phase, an untrained Transformer model with randomly
initialized parameters is trained to generate text via next-token-prediction. This
stage of training is computationally expensive, as it involves a supervised learning
approach and requires a large dataset. A sufficiently pre-trained decoder large
language model can generate sensible text by autoregressively predicting the next

token, thereby completing the token-sequence.

* Supervised fine-tuning: Once an LLM went through the pre-training phase, it
can predict next-token-probabilities following a given input text. However, for
it to be used to generate coherent responses in a conversational setting (e.g. as
an assistant or a chatbot), the generated text needs to adhere to a specific format
(involving answers to input questions). For this reason, this second step involves
fine-tuning the model to follow to a given format (again using a supervised learn-

ing approach).

* (optional) Reinforcement learning: In this last phase, a fine-tuned model may
be trained further using reinforcement learning. In this approach, the model aims
to maximize a reward-value, without being explicitly given the desired output (in
contrast to earlier phases). Recently, Shao et. al [27] showed how this procedure
allows models to develop reasoning capabilities required to solve challenging

math problems.

Pre-training and supervised fine-tuning both involve training the model using super-

vised learning. This approach is therefore described in the following sections.

CHAPTER 4. TRAINING OF TRANSFORMER MODELS 31
4.1 Training Data

In supervised learning, a machine learning model is given pairs of data P = (z',y")
with z?,y* € N™, called training patterns. Each pattern contains an input token ID
vector ' and a corresponding target token ID vector y*. To predict the j-th token of the
output vector, the Transformer model considers all input tokens 1, ..., 7, as described
in Sec. 3.4.

During training, pairs are sampled from a dataset D = {(z’,y")},7 = 1,..., N,. This
dataset is obtained by tokenizing a training text s, € S and then forming vectors of

consecutive tokens, where t = fien (Si) is the tokenized text.

t it

i tj+1 i tj+2
T =] Y=

tj+m—1 tj+m

4.2 Loss Term

Using a training pattern, the Transformer model produces predictions for the next to-
ken. Generating text in this sense is an interative, multi-class classification task, as the
model predicts one token from a vocabulary of n possibilities. This involves computing
probabilities for all of them. A commonly used loss function for this type of problem is
the cross-entropy loss. In general, for two discrete probability distributionsy € {0, 1}"
(target probabilities) and y € [0, 1]" (predicted probabilities), the cross-entropy loss is
defined by Eq. (4.1).

L(y,3)=—) ylogy, (4.1)
=1

In Transformer models, the output consists of m predicted probability distributions;
i.e., for each of the m input tokens, the model produces probabilities for the (m + 1)-th
token. Consequently, the total loss, as described in Eq. (4.2), is computed as the average

cross-entropy loss across all tokens.

m n

c (Y, i/) - —% YN vl (4.2)

i=1 j=1

CHAPTER 4. TRAINING OF TRANSFORMER MODELS 32

The objective is thus to minimize the cross-entropy loss of the network with respect to
the network parameters 6.
min £ (Y, i/)

The corresponding derivatives with respect to the predicted probabilities are

oL _i Yi,j

~

fori=1,...,mandj=1,...,n.

4.3 Updating Model Parameters

Because loss functions used in neural networks are non-convex (the global minimum
is not known beforehand), gradient descent optimization is used. In this algorithm,
the gradient of the loss function with respect to the model parameters (weights) is used
to update them iteratively. The gradient is usually estimated using only a subset (a
batch) of the dataset D. This variant is referred to as stochastic gradient descent.
Using a subset improves computational efficiency and generalization of the model. This
approach also introduces a scaling factor 7, the learning rate. The full update rule for

model parameters 6 is shown in Eq. (4.3).

oL

0" =0, —n-—
06!

(4.3)

Various extensions, such as the Adam optimizer [28], have been proposed to improve

the training process by modifying this update rule.

4.4 Backpropagation of Error

As Eq. (4.3) shows, the training of neural networks requires computing the gradient of
the loss function with respect to every model parameter. For this, the backpropagation
of error algorithm is used, which dates back to P. Werbos’ [29] PhD thesis in 1974.

A neural network can be thought of as a composition of many functions that transform

data. To compute the derivatives of function compositions the chain rule is used.

oy _ 0y O 0f Of
00y Of, Ofur Ofi 06

Y= fn (fnfl (fa(fr (x>61)))) -

CHAPTER 4. TRAINING OF TRANSFORMER MODELS 33

This approach is used in deep learning to backpropagate the error gradient through the
network as a model can be represented by a composition of (usually many) functions.
Even though Transformer models typically contain billions of parameters, they are also

trained using this simple algorithm.

CHAPTER 5. GENERATING TEXT 34

Chapter 5
Generating Text

Model inference involves generating text in an autoregressive manner. This is done
by invoking the model in a loop, where the output of one iteration is appended to the
input of the next, as depicted in Fig. 5.1. In the initial iteration, the model receives an
input text (referred to as the prompt) and uses it to generate probabilities for the next
token. This output probability distribution is then sampled. A common approach is top-
k-sampling, where only the £ highest token-probabilities are considered. Choosing
k = 1 results in deterministic text generation. However, this setting also limits the
“creativity” of the model, which might be undesirable for real applications. Once the
next token is determined, it is appended to the model input and the next iteration starts,

thereby continuously appending new tokens to the input.

)

m+1

?

r—\

m+2

f

rﬁ

m+3

f

[Transformer]

[Transformer]

[Transformer]

?

[1,2,..,m]

f

(1,2, .. m+1]

f

1,2, .. m+2]

4

. ¢

—>

Figure 5.1: Autoregressive text generation.

While generating a probability distribution for all m input tokens is beneficial for the
training process, it is not required for inference, since only the distribution of the next
token is relevant. Furthermore, starting from the second iteration, only a single token
in the input is new, allowing for the re-use of previously computed Attention scores for

other tokens. Thereby, higher memory-usage is traded for improved speed.

CHAPTER 6. IMPLEMENTATION AND EXPERIMENTS 35

Chapter 6
Implementation and Experiments

As part of this work, a Python deep-learning library was developed. It prioritizes a
transparent and easy-to-read implementation, while offering the required performance
to train models with millions of parameters. It is important to mention that outperform-
ing an existing deep-learning framework was not the aim here. Currently, it is powerful
enough to build and train Transformer models, while still having easy-to-understand
code that is not hidden behind many layers of low-level C++ and CUDA code. Using

it, a decoder-Transformer model was implemented and trained in two experiments:

* Verification: First, the same exact model architecture was implemented once
using PyTorch and once using the developed library. Parameters were identically
initialized, and random seeds set. The aim of this first experiment was to verify
the correctness of the developed library and to compare both libraries regarding

their performance.

* Pre-Training: Secondly, an LLM was built and trained using the developed li-
brary following a realistic pre-training process with tuned hyperparameters. The
goal was to gain insights into the training process and generate text using a pre-

trained Transformer model.

The subsequent sections detail both training experiments.

CHAPTER 6. IMPLEMENTATION AND EXPERIMENTS 36

6.1 The Dataset Used

In both experiments, the Tiny Shakespeare dataset was used for simplicity. It is a com-
paratively small text with approximately 40,000 lines from Shakespeare’s plays which
fitin a 1 MB text file. An excerpt from the dataset is shown in Tab. 6.1. The file is
provided by Andrej Karpathy' and is available on his GitHub page?. While this dataset
is not useful for training a model to generate meaningful text, it is useful to experiment

with pre-training a model due to its manageable size.

Table 6.1: The first few lines of the Tiny Shakespeare dataset.

First Citizen:
Before we proceed any further, hear me speak.

All:
Speak, speak.

First Citizen:
You are all resolved rather to die than to famish?

All:
Resolved. resolved.

First Citizen:
First, you know Caius Marcius is chief enemy to the people.

A character-level tokenizer was used, again, for simplicity, with its vocabulary obtained
from the unique characters in the dataset. This yielded a vocabulary of n = 65 char-
acters, including all lowercase and uppercase letters, numbers, and some punctuation.
For training, the dataset was then tokenized (converted into a vector of token IDs) and
subsequently split into 90-10 training-validation datasets, resulting in 1,003,855 tokens
for training and 111,539 tokens for validation. The vectors of token IDs were then used

to generate training patterns, as described in Sec. 4.1.

Thttps://karpathy.ai/
Zhttps://github.com/karpathy/char-rnn

CHAPTER 6. IMPLEMENTATION AND EXPERIMENTS 37
6.2 Library Implementation

A lightweight Python library for automatic differentiation was developed for this project.
The library relies purely on NumPy [30] (CPU) and CuPy [31] (GPU) for computation.
It enables the training of deep learning models with minimal external dependencies

while leveraging GPU acceleration.

At its core, the library features a Tensor object for storing data and gradients, and Op
objects for defining differentiable operations. The Tensor object is the fundamental
data structure. It holds numerical data as a NumPy array and keeps a reference to the Op
that created it. The Op object represents a differentiable operation applied to tensors.

Each operation implements methods for both a forward and backward pass.

Typical Workflow:

1. Computation Graph Construction: When an operation (e.g., Tensor .add) is
called, an Op instance is created. It performs the forward computation, while also
caching intermediate values required for the backward pass. The resulting output
tensor maintains references to the Op and parent tensors, forming a computational

graph, as depicted in Fig. 6.1.

2. Backpropagation: Calling the backward method of the final tensor (e.g. a loss
value) initiates gradient computation. The gradients propagate in reverse through
the computational graph by calling backward on each Op, which distributes

gradients to parent tensors.

3. Gradient Storage: As the gradients are propagated, they are stored in the grad

attribute of each Tensor, enabling parameter updates for optimization.

The library is licensed under the MIT license and available as open-source software on
GitHub [32].

CHAPTER 6. IMPLEMENTATION AND EXPERIMENTS

1 import auto_compyute as ac

4 x1

X2 =

6 x3 =

9 y =

= ac.randn (2,

3, reqg_grad=True)

ac.randn (2, 3, reg _grad=True)
ac.randn (2, 3, reg _grad=True)

x1l x* 2 + 4 x x2 + x3 + 10

12 ac.viz.draw_graph (y)

Tensor
shape: (2, 3)
dtype: float32

Tensor
shape: (2, 3)
dtype: float3Z

shape: ()

dtype: float32

N —
Tensor) Tensor
o shape: (2, 3)

kwargs exp=2

shape: (2, 3)
dtype: float32

Add
shape: (2, 3)
dtype float32

Mul /
shape: (2, 3)

dtype: float32

Add
shape: (2, 3)
dtype: float32

Add
shape: (2, 3)
dtype: float32

dtype: float32

shape: ()

Tensor
dtype: float32

38

Figure 6.1: Example of computation graph construction from expressions. Green nodes
indicate trainable parameters, while grey nodes represent operations.

6.3 Experiment Setup

All training experiments were performed on commodity hardware. Tabs. 6.2 to 6.4
show the used hardware, software versions, as well as other relevant details. Logging

was done using the Tensorboard * and TensorboardX # Python packages.

Table 6.2: Hardware used for all training runs.

Component Specifications

CpPU AMD Ryzen 7 5800X 8-Core Processor

RAM 64 GB DDR4 3200 MHz

GPU NVIDIA GeForce RTX 4070 (12282 MiB VRAM)

3https://github.com/tensorflow/tensorboard
“http://github.com/lanpa/tensorboardX

CHAPTER 6. IMPLEMENTATION AND EXPERIMENTS 39

Table 6.3: Software used in all training runs.

Software Version

Operating System Microsoft Windows 11 Home
Python 3.12

CUDA 12.3

NumPy 2.1.2

CuPy (CUDA 12x) 13.4.1

PyTorch (CUDA 12.4) 2.6.0

Table 6.4: Other details relevant to training.

Detail Value

Parameter data type 32-bit floating point

6.3.1 Verification

This first experiment aimed at evaluating the developed library by comparing it to Py-
Torch. The model parameters were initialized beforehand and subsequently used in
both models to achieve deterministic and consistent results. Furthermore, during train-
ing, fixed random seeds were used, dropout was deactivated, and training patterns were
used in a fixed order to remove randomness. The hyperparameters used in this evalua-
tion are listed in Tab. 6.5.

Table 6.5: Hyperparameters used in the verification experiment.

Hyperparameter Value

Input sequence length m 256
Embedding dimensions dogel 384
Attention heads A 6
Transformer blocks 6

Number of parameters 10,788,864
Dropout probability 0

Optimizer AdamW [33]
Objective function £ Cross Entropy Loss
Learning rate n 3x107*
Batch size 64

Training steps 1000

CHAPTER 6. IMPLEMENTATION AND EXPERIMENTS 40

6.3.2 Pre-Training

Once the correctness of the developed library was confirmed, in a second experiment, a
more extensive model pre-training was conducted. The hyperparameters used are listed
in Tab. 6.6. Furthermore, to observe the performance improvement of the model during
training, text samples were generated every 500 steps, where sampling was done using
k = 1 (token with highest probability). Model parameters were initialized following
GPT-2 [19].

Table 6.6: Hyperparameters used for pre-training.

Hyperparameter Value

Input sequence length m 256
Embedding dimensions dpoqel 384
Attention heads h 6
Transformer blocks 6

Number of parameters 10,788,864
Dropout probability 0.3
Optimizer AdamW [33]

Objective function £
Learning rate n
Batch size

Training steps

Cross Entropy Loss
3 x107*

64

2500

The code used for training is available on GitHub".

Shttps://github.com/dakofler/master_thesis_impl

CHAPTER 7. RESULTS 41

Chapter 7

Results

7.1 Verification

The training details are summarized in Tab. 7.1.

* Loss: Fig. 7.1 shows the loss curves, which seem to overlap perfectly, confirming
a correct implementation. Fig. 7.2 shows the deviation between the two curves.
A positive trend can be seen, as the deviation keeps increasing with the number
of training steps. The values themselves, however, are very low in comparison to

the actual loss values and can therefore be neglected.

* VRAM Usage: Fig. 7.3 shows the graphics memory usage over time. PyTorch
uses a maximum of 3246 MiB while the implemented framework reaches a top
usage of 5272 MiB, which is roughly 62% higher.

* Processing speed: Fig. 7.4 depicts the token processing speed of the libraries

where PyTorch’s performance is up to 30 times higher.

Table 7.1: Summarized performance results.

Property PyTorch Implementation
Total training time 101 s 319s
Max VRAM memory usage 3246 MiB 5272 MiB

Avg processing speed 1792819 Tokens/s 58645 Tokens/s

CHAPTER 7. RESULTS 42

5F T T T T T .|
Implementation
— PyTorch
4r 1
3 - -
2
e}
=
2 L -
1r 1
0 C i I I I I i]
0 200 400 600 800 1000
Step

Figure 7.1: The loss curves of PyTorch and the implementated library match perfectly.

T T T T T T

0.00025 Devation g
—— Smoothed Deviation
0.00020 - : 8
=1
e
<
%
A 0.00015 - i : 8
%
Q
=
[}
£ 0.00010 | & 8
2
o
<
0.00005 - 1
0.00000 - 8
0 200 400 600 800 1000
Step

Figure 7.2: The absolute deviation of loss values between PyTorch and the implemen-
tatation is insignificantly low but shows a positive trend. For the smoothed line, the
rolling mean over 50 steps was applied.

CHAPTER 7. RESULTS 43

5000 — Implementation |
— PyTorch

4000 - a

w

S

S

o
T

I

VRAM Usage in MiB
(3
S
S
IS

1000 y

T

200 400 600 800 1000
Step

ok

Figure 7.3: The developed library shows an approximately 62% higher VRAM usage
throughout the training run.

x 108

—_

ot

(e}
T

|

[

[\

()]
T

|

— Implemé¢ntation
r Py|lorch

Tokens per Second
o —_
=~ o
o S
T T
1 1

o

(SN

]
T

I

0.25 7

0.00 1 1 1 1 1
0 200 400 600 800 1000

Step

Figure 7.4: PyTorch massively outperforms the implementated library. It shows up to a
30-times higher number of tokens processed per second.

CHAPTER 7. RESULTS 44
7.2 Pre-Training

The loss curves of the pre-training experiment are shown in Figs. 7.5 and 7.6. While the
training loss kept decreasing, the validation loss seemed to plateau and start to slightly

increase, indicating that the model started to overfit towards the end.

Appendix A shows all text samples generated during the experimental training. In early
steps, the model seems to have adopted the overall text structure while still struggling
with forming words and word ordering. By step 1500 the model learned the structure
of sentences and used punctuation correctly. Furthermore, it seems to have learned to
generate short, but sensible word sequences. By the end of the experiment, the model

was able to form correct sentences, although their content was mostly nonsensical.

CHAPTER 7. RESULTS

Loss

Loss

i
v

0 500 1000 1500 2000
Step

Figure 7.5: Training loss curve.

2500

2.0F

1.5

1.0

0 500 1000 1500 2000
Step

Figure 7.6: Validation loss curve.

2500

CHAPTER 8. DISCUSSION 46

Chapter 8

Discussion

8.1 Remarks on the Library Comparison

The results confirm the correct implementation; however, they also clearly indicate
a much worse performance of the developed library compared to PyTorch. While the
memory usage and total training time are not far behind, the measured processing speed

highlights the performance gap. This could be explained by the following:

* Code Optimization: While the computations are correct, there is still optimiza-
tion potential that might help to reduce memory usage, avoid unnecessary mem-
ory access and improve performance. For example, there might be redundant

caching of matrices for gradient computation that could be avoided.

* Kernel Fusion: The library currently makes use of CuPy’s operations, each of
which read data from memory, perform computation and then save the result back
to memory. There are countless situations where data is saved to memory only
to be immediately read back to perform the next computation. PyTorch avoids
this redundancy by using fused Kernels (multiple operations combined to avoid

unnecessary memory reads and writes).

Furthermore, Fig. 7.2 showed slight deviations in the training loss. These might occur
due to lower level differences of PyTorch and CuPy, such as floating-point precision

and specific algorithmic choices.

CHAPTER 8. DISCUSSION 47
8.2 Remarks on Pre-Training

During pre-training, the model clearly showed improvements in its capabilities to gen-
erate Shakespeare-like text. While the scale of the pre-training experiment (in terms of
dataset used and model size) was sufficient to demonstrate the process, it is not useful
for real applications. To train models that are useful in practice, much larger and more
general datasets, such as HuggingFace’s FineWeb [34] and an increase in the number
of model parameters are required. Tab. 8.1 shows a comparison of datasets and model
sizes used for current LLMs. Training these larger models furthermore requires sig-
nificantly more hardware resources and engineering expertise, usually not available to

academia.

Table 8.1: Comparison to some published training configurations.

Model Training Tokens Number of parameters
Implementated model 41 M 109 M
GPT-2 (smallest) [19] 8B 117 M
GPT-2 (largest) [19] 8B 1.542 B
GPT-3 (largest) [20] 400 B 175B

8.3 Outlook

This work detailed how Transformers function and demonstrated their pre-training pro-
cess. Since their introduction, interest and investment in generative Al have surged.
Public attention has shifted toward Al, and industry adoption is accelerating. In recent
years, LLLMs have improved significantly, largely due to increased computational re-
sources and new innovations. The race for more powerful models continues with no

clear end in sight.

CHAPTER 9. CONCLUSIONS 48

Chapter 9
Conclusions

This work formally describes the architecture of the Transformer neural network model
introduced by Vaswani et al. [1], and the training process of large language models.
Each component of a typical decoder-Transformer is explained, with mathematical
derivations, including training-related gradients, provided. A custom library was de-
veloped to implement a Transformer model, supporting the formal descriptions. The
implementation was validated against PyTorch, confirming its correctness despite sig-
nificant performance differences. Finally, the model was pre-trained on the Tiny Shake-
speare dataset to demonstrate the learning process. This work thus serves as an intro-
duction to the subject for mathematicians interested in the theory behind LLMs and

computer scientists seeking a practical implementation guide.

REFERENCES 49

References

[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and 1. Polosukhin, “Attention is all you need,” Advances in neural in-

formation processing systems, vol. 30, 2017.

[2] R. Xiong, Y. Yang, D. He, K. Zheng, S. Zheng, C. Xing, H. Zhang, Y. Lan,
L. Wang, and T. Liu, “On layer normalization in the transformer architecture,” in
International conference on machine learning. PMLR, 2020, pp. 1052410 533.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770-778.

[4] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computa-
tion, vol. 9, no. 8, pp. 1735-1780, 1997.

[5] D.Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learn-
ing to align and translate,” arXiv preprint arXiv:1409.0473, 2014.

[6] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift,” in International conference on machine
learning. pmlr, 2015, pp. 448—456.

[7] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv preprint
arXiv:1607.06450, 2016.

[8] F. Rosenblatt, “The perceptron: a probabilistic model for information storage and

organization in the brain.” Psychological review, vol. 65, no. 6, p. 386, 1958.

[9] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catanzaro,
“Megatron-Im: Training multi-billion parameter language models using model
parallelism,” arXiv preprint arXiv:1909.08053, 2019.

[10] D. Foster, Generative deep learning. O’Reilly Media, Inc.”, 2022.

REFERENCES 50

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

J. Alammar and M. Grootendorst, Hands-on large language models: language

understanding and generation. ~ O’Reilly Media, Inc.”, 2024.

M. Phuong and M. Hutter, “Formal algorithms for transformers,” arXiv preprint
arXiv:2207.09238, 2022.

M. Schuster and K. Nakajima, “Japanese and korean voice search,” in 2012 IEEE
international conference on acoustics, speech and signal processing (ICASSP).
IEEE, 2012, pp. 5149-5152.

R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation of rare words
with subword units,” arXiv preprint arXiv:1508.07909, 2015.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: a simple way to prevent neural networks from overfitting,” The journal

of machine learning research, vol. 15, no. 1, pp. 1929-1958, 2014.

A. Radford, J. W. Kim, T. Xu, G. Brockman, C. McLeavey, and 1. Sutskever,
“Robust speech recognition via large-scale weak supervision,” in International
conference on machine learning. PMLR, 2023, pp. 28 492-28 518.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep
bidirectional transformers for language understanding,” in Proceedings of the
2019 conference of the North American chapter of the association for compu-
tational linguistics: human language technologies, volume 1 (long and short pa-
pers), 2019, pp. 4171-4186.

A. Radford, K. Narasimhan, T. Salimans, 1. Sutskever et al., “Improving language

understanding by generative pre-training,” 2018.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al., “Language
models are unsupervised multitask learners,” OpenAl blog, vol. 1, no. 8, p. 9,
2019.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Nee-
lakantan, P. Shyam, G. Sastry, A. Askell et al., “Language models are few-shot

learners,” Advances in neural information processing systems, vol. 33, pp. 1877—
1901, 2020.

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word rep-

resentations in vector space,” arXiv preprint arXiv:1301.3781, 2013.

REFERENCES 51

[22] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin, “Convolutional
sequence to sequence learning,” in International conference on machine learning.
PMLR, 2017, pp. 1243-1252.

[23] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with
gradient descent is difficult,” IEEE transactions on neural networks, vol. 5, no. 2,
pp- 157-166, 1994.

[24] L. A. Goodman, “On the exact variance of products,” Journal of the American
statistical association, vol. 55, no. 292, pp. 708-713, 1960.

[25] D. Hendrycks and K. Gimpel, “Gaussian error linear units (gelus),” arXiv preprint
arXiv:1606.08415, 2016.

[26] O. Press and L. Wolf, “Using the output embedding to improve language models,”
arXiv preprint arXiv:1608.05859, 2016.

[27] Z. Shao, P. Wang, Q. Zhu, R. Xu, J. Song, X. Bi, H. Zhang, M. Zhang, Y. Li,
Y. Wu et al., “Deepseekmath: Pushing the limits of mathematical reasoning in

open language models,” arXiv preprint arXiv:2402.03300, 2024.

[28] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[29] P. Werbos, “Beyond regression: New tools for prediction and analysis in the be-
havioral sciences,” PhD thesis, Committee on Applied Mathematics, Harvard Uni-
versity, Cambridge, MA, 1974.

[30] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen,
D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus,
S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Rio, M. Wiebe,
P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser,
H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array programming with NumPy,”
Nature, vol. 585, no. 7825, pp. 357-362, Sep. 2020. [Online]. Available:
https://doi.org/10.1038/s41586-020-2649-2

[31] R. Okuta, Y. Unno, D. Nishino, S. Hido, and C. Loomis, “Cupy: A numpy-
compatible library for nvidia gpu calculations,” in Proceedings of Workshop on
Machine Learning Systems (LearningSys) in The Thirty-first Annual Conference
on Neural Information Processing Systems (NIPS), 2017. [Online]. Available:
http://learningsys.org/nips17/assets/papers/paper_16.pdf

https://doi.org/10.1038/s41586-020-2649-2
http://learningsys.org/nips17/assets/papers/paper_16.pdf

REFERENCES 52

[32] D. Kofler, “Auto compyute,” https://github.com/dakofler/auto_compyute, 2025,
version 0.1.0.

[33] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” arXiv
preprint arXiv:1711.05101, 2017.

[34] G. Penedo, H. Kydlicek, L. B. allal, A. Lozhkov, M. Mitchell, C. Raffel,
L. V. Werra, and T. Wolf, “The fineweb datasets: Decanting the web for the
finest text data at scale,” in The Thirty-eight Conference on Neural Information
Processing Systems Datasets and Benchmarks Track, 2024. [Online]. Available:
https://openreview.net/forum?id=n6SCkn2QaG

https://github.com/dakofler/auto_compyute
https://openreview.net/forum?id=n6SCkn2QaG

APPENDIX A. PRE-TRAINING TEXT SAMPLES 53

Appendix A

Pre-Training Text Samples

Bold texts highlight the input prompt, followed by the generated text (100 new tokens).

Step 500

CLIFFORD:
Here burns my candle out; ay, here it dies,

Which, whiles it lasted, gave King Henry light.

KING RICHARD III:
What hat he mat the the he se theat the so the sto the the the so
The the shat th

BISHOP OF ELY:

Now in good time, here comes the duke himself.

GLOUCESTER:
The the the the the she son the the the so the so son the the spear
The the the the she shat the so

DUKE VINCENTIO:
There was a friar told me of this man.

KING RICHARD III:
‘What the the the the the she she st the the the so so
The the the sthe st the so

Boatswain:

APPENDIX A. PRE-TRAINING TEXT SAMPLES 54

When the sea is. Hence! What cares these roarers
for the name of king? To cabin: silence! trouble us not.

GONZALO:
The the the she the the the so so the seat the the the sto
The she sto so the sto the the so sthe t

First Senator:

There’s no remedy;

Unless, by not so doing, our good city the the the the so the sour the she the son the
The the the she speat the the the the sthe so the t

Step 1000

CLIFFORD:
Here burns my candle out; ay, here it dies,
Which, whiles it lasted, gave King Henry light.

KING EDWARD 1V:

Why, what the will the see the so so the so see the comes,
And the with the shall

BISHOP OF ELY:

Now in good time, here comes the duke himself.

GLOUCESTER:

‘What the will the will the so so the words the words the words,
And the will the words the words th

DUKE VINCENTIO:

There was a friar told me of this man.

KING EDWARD 1V:
And the shall the will the come the world the words,
And the will the will the war

Boatswain:
When the sea is. Hence! What cares these roarers
for the name of king? To cabin: silence! trouble us not.

APPENDIX A. PRE-TRAINING TEXT SAMPLES

GONZALO:
I would the words the so the words the so the so so so so so so the see the come
To the words the s

First Senator:

There’s no remedy;

Unless, by not so doing, our good city

The so see the so the so see the wards of the some
To the words the words of the world the so the

Step 1500

CLIFFORD:
Here burns my candle out; ay, here it dies,
Which, whiles it lasted, gave King Henry light.

KING RICHARD I1I:
The shall be so the shall be so the word.

KING RICHARD I1I:
The shall be shall

BISHOP OF ELY:
Now in good time, here comes the duke himself.

GLOUCESTER:
I will not thee the world of the world.

KING EDWARD IV:
Why, then the shall the shall be so more t

DUKE VINCENTIO:
There was a friar told me of this man.

LUCIO:

I will not the words of the world.

LUCIO:

I will not the word.

APPENDIX A. PRE-TRAINING TEXT SAMPLES

LUCIO:

I would not the wor

56

Boatswain:

When the sea is. Hence! What cares these roarers

for the name of king? To cabin: silence! trouble us not.

GONZALO:
I will not thee the world of the world of the state,
The shall be shall be be be be stand the body.

First Senator:

There’s no remedy;

Unless, by not so doing, our good city
To the senate of the world of the world.

LEONTES:
I will be not the shall be so be the world.

LEO

Step 2000

CLIFFORD:
Here burns my candle out; ay, here it dies,
Which, whiles it lasted, gave King Henry light.

KING RICHARD II:
The sent of the king of the king,

And the sea of the season of the court.

KING R

BISHOP OF ELY:

Now in good time, here comes the duke himself.

GLOUCESTER:

APPENDIX A. PRE-TRAINING TEXT SAMPLES

The king of the country’s son, the king’s son,
And the season of the world of the world.

KING RICH

57

DUKE VINCENTIO:
There was a friar told me of this man.

DUKE VINCENTIO:

I would not be so much a word of the world.

DUKE VINCENTIO:

I will not be so thin

Boatswain:
When the sea is. Hence! What cares these roarers

for the name of king? To cabin: silence! trouble us not.

GONZALO:
I would be say you shall be so.

LEONTES:

I will be so the strike of the country.

LADY ANNE:

I wil

First Senator:
There’s no remedy;
Unless, by not so doing, our good city,

That we shall be seen to the world.

Second Servant:

The senators of the country of the country.

Step 2500

CLIFFORD:

Here burns my candle out; ay, here it dies,

APPENDIX A. PRE-TRAINING TEXT SAMPLES

Which, whiles it lasted, gave King Henry light.

KING HENRY VI:
What says thou wilt thou hast not stand the state of the house?

KING HENRY VI:
Then

BISHOP OF ELY:
Now in good time, here comes the duke himself.

GLOUCESTER:
The gracious lord, and the gracious lord.

LADY ANNE:

I will not stay the gracious lord.

LADY ANNE

DUKE VINCENTIO:
There was a friar told me of this man.

LUCIO:

The gracious lady is not the seat of the world.

LUCIO:
The gods of the prince, and the sta

Boatswain:
When the sea is. Hence! What cares these roarers

for the name of king? To cabin: silence! trouble us not.

GONZALO:
What shall be so?

POLIXENES:
What is the straighter of the state of the state?

PAULINA:
The gods

APPENDIX A. PRE-TRAINING TEXT SAMPLES

59

First Senator:
There’s no remedy;
Unless, by not so doing, our good city.

Second Servant:
The gods of the prince of the state of the state,
And the state of the seat of th

	Affidavit
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Convention
	Introduction
	Why are Transformers successful?
	Related Work
	Problem Statement

	Tokenization
	Obtaining a Token-Vocabulary
	Text-Splitting Approaches
	Character-level Tokenization
	Word-level Tokenization
	Sub-Word Tokenization

	The Transformer
	Embedding
	Token Embedding
	Position-Encoding
	Embedding Addition

	Normalization
	Residual Connections
	Masked Multi-Head Self-Attention (MHSA)
	Using Multiple Attention Heads
	Query, Key and Value Vectors
	Scaled Dot-Product Attention
	Concatenation and Output Projection

	Feed-Forward Network (FFN)
	Classifier

	Training of Transformer Models
	Training Data
	Loss Term
	Updating Model Parameters
	Backpropagation of Error

	Generating Text
	Implementation and Experiments
	The Dataset Used
	Library Implementation
	Experiment Setup
	Verification
	Pre-Training

	Results
	Verification
	Pre-Training

	Discussion
	Remarks on the Library Comparison
	Remarks on Pre-Training
	Outlook

	Conclusions
	References
	Pre-Training Text Samples

